
minieigen Documentation
Release 0.53

Václav Šmilauer

Jan 21, 2018





Contents

1 Overview 1

2 Examples 3

3 Naming conventions 5

4 Limitations 7

5 Links 9

6 Documentation 11

i



ii



CHAPTER 1

Overview

Todo: Something concise here.

1



minieigen Documentation, Release 0.53

2 Chapter 1. Overview



CHAPTER 2

Examples

Todo: Some examples of what can be done with minieigen.

3



minieigen Documentation, Release 0.53

4 Chapter 2. Examples



CHAPTER 3

Naming conventions

• Classes are suffixed with number indicating size where it makes sense (it does not make sense for minieigen.
Quaternion):

– minieigen.Vector3 is a 3-vector (column vector);

– minieigen.Matrix3 is a 3×3 matrix;

– minieigen.AlignedBox3 is aligned box in 3d;

– X indicates dynamic-sized types, such as minieigen.VectorX or minieigen.MatrixX.

• Scalar (element) type is suffixed at the end:

– nothing is suffixed for floats (minieigen.Matrix3);

– i indicates integers (minieigen.Matrix3i);

– c indicates complex numbers (minieigen.Matrix3c).

• Methods are named as follows:

– static methods are upper-case (as in c++), e.g. minieigen.Matrix3.Random;

* nullary static methods are exposed as properties, if they return a constant (e.g. minieigen.
Matrix3.Identity); if they don’t, they are exposed as methods (minieigen.Matrix3.
Random); the idea is that the necessity to call the method (Matrix3.Random()) singifies that
there is some computation going on, whereas constants behave like immutable singletons.

– non-static methods are lower-case (as in c++), e.g. minieigen.Matrix3.inverse.

• Return types:

– methods modifying the instance in-place return None (e.g. minieigen.Vector3.normalize);
some methods in c++ (e.g. Quaternion::setFromTwoVectors) both modify the instance and re-
turn the reference to it, which we don’t want to do in Python (minieigen.Quaternion.
setFromTwoVectors);

– methods returning another object (e.g. minieigen.Vector3.normalized) do not modify the in-
stance;

5

http://eigen.tuxfamily.org/dox-devel/classEigen_1_1QuaternionBase.html#ac35460294d855096e9b687cadf821452


minieigen Documentation, Release 0.53

– methods returning (non-const) references return by value in python

6 Chapter 3. Naming conventions



CHAPTER 4

Limitations

• Type conversions (e.g. float to complex) are not supported.

• Methods returning references in c++ return values in Python (so e.g. Matrix3().diagonal()[2]=0
would zero the last diagonal element in c++ but not in Python).

• Many methods are not wrapped, though they are fairly easy to add.

• Conversion from 1-column MatrixX to VectorX is not automatic in places where the algebra requires it.

• Alignment of matrices is not supported (therefore Eigen cannot vectorize the code well); it might be a perfor-
mance issue in some cases; c++ code interfacing with minieigen (in a way that c++ values can be set from
Python) must compile with EIGEN_DONT_ALIGN, otherwise there might be crashes at runtime when vector
instructions receive unaligned data. It seems that alignment is difficult to do with boost::python.

• Proper automatic tests are missing.

7



minieigen Documentation, Release 0.53

8 Chapter 4. Limitations



CHAPTER 5

Links

• http://eigen.tuxfamily.org (Eigen itself)

• http://www.launchpad.net/minieigen (upstream repository, bug reports, answers)

• https://pypi.python.org/pypi/minieigen (Python package index page, used by easy_install)

• packages:

– Debian

– Ubuntu: distribution, PPA

9

http://eigen.tuxfamily.org
http://www.launchpad.net/minieigen
https://pypi.python.org/pypi/minieigen
http://packages.debian.org/search?keywords=minieigen
http://packages.ubuntu.com/search?keywords=minieigen&searchon=names&suite=all&section=all
https://code.launchpad.net/~eudoxos/+archive/minieigen


minieigen Documentation, Release 0.53

10 Chapter 5. Links



CHAPTER 6

Documentation

• genindex

• search

11


	Overview
	Examples
	Naming conventions
	Limitations
	Links
	Documentation

