

minieigen documentation

Overview

Todo

Something concise here.

Examples

Todo

Some examples of what can be done with minieigen.

Naming conventions

	Classes are suffixed with number indicating size where it makes sense (it does not make sense for minieigen.Quaternion):

	minieigen.Vector3 is a 3-vector (column vector);

	minieigen.Matrix3 is a 3×3 matrix;

	minieigen.AlignedBox3 is aligned box in 3d;

	X indicates dynamic-sized types, such as minieigen.VectorX or minieigen.MatrixX.

	Scalar (element) type is suffixed at the end:

	nothing is suffixed for floats (minieigen.Matrix3);

	i indicates integers (minieigen.Matrix3i);

	c indicates complex numbers (minieigen.Matrix3c).

	Methods are named as follows:

	static methods are upper-case (as in c++), e.g. minieigen.Matrix3.Random;

	nullary static methods are exposed as properties, if they return a constant (e.g. minieigen.Matrix3.Identity); if they don’t, they are exposed as methods (minieigen.Matrix3.Random); the idea is that the necessity to call the method (Matrix3.Random()) singifies that there is some computation going on, whereas constants behave like immutable singletons.

	non-static methods are lower-case (as in c++), e.g. minieigen.Matrix3.inverse.

	Return types:

	methods modifying the instance in-place return None (e.g. minieigen.Vector3.normalize); some methods in c++ (e.g. Quaternion::setFromTwoVectors [http://eigen.tuxfamily.org/dox-devel/classEigen_1_1QuaternionBase.html#ac35460294d855096e9b687cadf821452]) both modify the instance and return the reference to it, which we don’t want to do in Python (minieigen.Quaternion.setFromTwoVectors);

	methods returning another object (e.g. minieigen.Vector3.normalized) do not modify the instance;

	methods returning (non-const) references return by value in python

Limitations

	Type conversions (e.g. float to complex) are not supported.

	Methods returning references in c++ return values in Python (so e.g. Matrix3().diagonal()[2]=0 would zero the last diagonal element in c++ but not in Python).

	Many methods are not wrapped, though they are fairly easy to add.

	Conversion from 1-column MatrixX to VectorX is not automatic in places where the algebra requires it.

	Alignment of matrices is not supported (therefore Eigen cannot vectorize the code well); it might be a performance issue in some cases; c++ code interfacing with minieigen (in a way that c++ values can be set from Python) must compile with EIGEN_DONT_ALIGN, otherwise there might be crashes at runtime when vector instructions receive unaligned data. It seems that alignment is difficult to do with boost::python.

	Proper automatic tests are missing.

Links

	http://eigen.tuxfamily.org (Eigen itself)

	http://www.launchpad.net/minieigen (upstream repository, bug reports, answers)

	https://pypi.python.org/pypi/minieigen (Python package index page, used by easy_install)

	packages:

	Debian [http://packages.debian.org/search?keywords=minieigen]

	Ubuntu: distribution [http://packages.ubuntu.com/search?keywords=minieigen&searchon=names&suite=all§ion=all], PPA [https://code.launchpad.net/~eudoxos/+archive/minieigen]

Documentation

	Index

	Search Page

Index

 nav.xhtml

 Table of Contents

 		
 minieigen documentation

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

